Soal Persamaan Logaritma

Setelah tadi kita belajar persamaannya, sekarang ada contoh soalnya nih. Simak yaa!!!


Soal No.1

Carilah himpunan penyelesaian dari 2log(x2 + 4x) = 5 !

Pembahasan

2log(x2 + 4x) = 5
2log(x2 + 4x) = 2log 25
2log(x2 + 4x) = 2log 32

maka :
x2 + 4x = 32
x2 + 4x - 32 = 0
(x - 4)(x + 8) =
x = 4 dan x = -8

Himpunan penyelesaiannya adalah {-8, 4}



Soal No.2


Carilah himpunan penyelesaian dari 5log(2x2 + 5x - 10) = 5log(x2 - 2x + 18)

Pembahasan

5log(2x2 + 5x - 10) = 5log(x2 - 2x + 18)
2x2 + 5x - 10 = x2 - 2x + 18
2x2 - x2 + 5x - 2x - 10 - 18 = 0
x2 + 3x - 28 = 0
(x - 4)(x + 7) = 0
x=4 dan x=-7

Himpunan penyelesaiannya adalah {4,-7}



Soal No.3


Carilah himpunan penyelesaian dari 4log(3x - 1) = 5log(2x + 2)

Pembahasan

4log(3x - 1) = 5log(2x + 2)
3x - 1 = 2x + 2
3x - 2x - 1 - 2 = 0
x - 3 = 0
x = 3

Himpunan penyelesaiannya adalah {3}



Soal No.4


Carilah himpunan penyelesaian dari (x2-1)log(2x2 - 2x + 20) = (x2-1)log(x2 + 6x + 5)

Pembahasan

(x2-1)log(2x2 - 2x + 20) = (x2-1)log(x2 + 6x + 5)
2x2 - 2x + 20 = x2 + 6x + 5
2x2 - x2 - 2x - 6x + 20 - 5 = 0
x2 - 8x + 15 = 0
(x - 3)(x - 5) = 0
x = 3 dan x = 5

Himpunan penyelesaiannya adalah {3,5}



Soal No.5


Tentukan nilai x dari persamaan logaritma 3log2x - 7.3log x + 12 = 0

Pembahasan

Misalkan : p = 3log x

Maka :
p2 - 7p + 12 =
(p - 4)(p - 3) = p = 4 dan p = 3

Substitusi nilai p = 3log x, sehingga diperoleh nilai x:
3log x = p (masukkan nilai p = 4)
3log x = 4 ⇒ x = 34 = 81

3log x = p (masukkan nilai p = 3)
3log x = 3 ⇒ x = 33 = 27

Jadi nilai x nya adalah {81, 27}

Komentar

Posting Komentar

Postingan populer dari blog ini

PEMBAHASAN SOAL VEKTOR NOMOR 30

SIFAT KESIMETRIAN DAN SIFAT SUDUT PADA SEGITIGA, SIFAT SEGI EMPAT DAN LINGKARAN BERSAMA CONTOH SOALNYA

MASALAH KONTEKSUAL YANG BERHUBUNGAN DENGAN VEKTOR